Preparation and Solid State Characterization of 1,2,3,5-Diselenadiazolyl [HCN₂Se₂]⁻

A. Wallace Cordes,^a Sivert H. Glarum,^b Robert C. Haddon,^b Randal Hallford,^a Robin G. Hicks,^c Dietmar K. Kennepohl,^c Richard T. Oakley,^c Thomas T. M. Palstra^b and Syrona R. Scott^a

 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
Guelph-Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada

The reaction of N, N, N'-tris(trimethylsilyl)formamidine with SeCl₂ affords 1,2,3,5-diselenadiazolium chloride, which can be reduced with triphenylantimony to the corresponding diselenadiazolyl radical [HCN₂Se₂]; the solid state structure and conductivity of the dimer [HCN₂Se₂]₂ are reported.

Interest in the design of molecular conductors based on neutral π -radicals has prompted the study of heterocyclic thiazyl and selenazyl radicals, in particular derivatives of 1,2,3,5-dithia- and diselena-diazolyl.¹ Several systems with different substituents in the 4-position have been characterized in the solid state.^{2,3} Structure–conductivity correlations based on several selenium derivatives^{4–6} indicate that the size of the 4-substituent plays an important role in determining the number and magnitude of close intermolecular interactions, and hence band dispersion.⁷ In the belief that smaller organic substituents should lead to more densely-packed structures with narrower band gaps, we have prepared the prototypal diselenadiazolyl heterocycle **1**, in which the organic group has been removed entirely. The solid state characterization of the dimer is also described.

Fig. 1 General view of the crystal structure of $[HCN_2Se_2]_2$, showing head-over-tail stacking of dimers. Intradimer distances (Å) are Se(1)–Se(2) 2.329(4); Se(3)–Se(4) 2.322(4); Se(1)–Se(3) 3.215(3); Se(2)–Se(4), 3.345(3); interdimer contacts (Å) are d_1 , Se(4)···Se(2') 3.382(4); d_2 , Se(4)···Se(4'), 3.376(5); d_3 , Se(1)···Se(4'), 4.049(4); d_4 , Se(1)···Se(1'), 3.445(5); d_5 , Se(2)···Se(4') 3.724(4); d_6 , Se(1)···Se(3'), 3.774(5).

Our primary synthetic route to both 1,2,3,5-dithia- and diselena-diazolium cations has involved the condensation of persilvlated amidines $RCN(SiMe_3)_2NSiMe_3$ with ECl_2 (E = S, Se). However, the method of preparation of the amidines, the addition of $LiN(SiMe)_2$ to a nitrile RCN,⁸ appears to be limited to aryl nitriles. We have now discovered that the parent compound N, N, N'-tris(trimethylsilyl)formamidine 2 can be conveniently generated by the reaction of LiN-(SiMe₃)₂·Et₂O (54.1 g, 224 mmol) with 1,3,5-triazine (6.2 g, 76 mmol) in 200 ml toluene, followed by treatment of the intermediate lithiated amidine with Me₃SiCl (25.7 g, 237 mmol); 2 distils at $35 \degree C/10^{-2}$ Torr (1 Torr = 133.3 Pa; yield, 41.5 g, 66%); ¹H NMR, δ (CDCl₃) 7.96 (s, 1 H, HC), 0.16 (s, 27 H, Me₃Si). Addition of 2 (6.38 g, 24 mmol) to selenium dichloride (3.60 g, 24 mmol, prepared in situ from Se and $SeCl_{4}$ in acetonitrile (140 ml) affords the diselenadiazolium cation 3 (E = Se) as a reddish-brown powder in virtually quantitative yield. Reduction of this crude salt (1.27 g, 5.4 mmol) with triphenylantimony (0.96 g, 2.7 mmol) in acetonitrile (20 ml) yields 1,2,3,5-diselenadiazolyl 1, which can be purified by sublimation at 50 °C/10-3 Torr as lustrous greyblack needles (0.56 g, 52%); decomp. > 100 °C; MS (70 eV) m/z 201 (M⁺, 40%), 174 (Se₂N⁺, 95%), 160 (Se₂⁺, 100%), 107 (HCNSe⁺, 8%), 94 (SeN⁺, 20%), 80 (Se⁺, 50%). The ESR signal (in CH₂Cl₂, 295K) of 1 consists of a featureless singlet, with g = 2.041.

The crystal structure of the dimer of 1 has been determined by X-ray diffraction.[†] The structure consists of antiparallel arrays of cofacial dimers [HCN₂Se₂]₂; Fig. 1 provides a general view of the structure, defines the interdimer contacts d_1-d_6 , and illustrates the head-over-tail packing of dimers. All intramolecular bond lengths and angles are nominal, but the two interannular contacts Se(1)...Se(3) [3.215(3) Å] and Se(2)···Se(4) [3.345(3) Å] are notably different (cf. [PhCN₂Se₂]₂³). The interdimer Se^{...}Se contacts d_5 and d_6 are well within the van der Waals separation,9 and generate a strong network of lateral interactions. These lateral contacts help lace together interpenetrating spiral-like columns of dimers, one of which is shown in Fig. 2. Within these columns, which run parallel to z, there are many close Se...Se contacts. The interactions d_1 , d_2 and d_4 , which connect dimer units that approach one another in a side-slipped head-on manner, are all exceptionally short. The final contact d_3 runs almost parallel to z and connects (somewhat loosely) rings in a corner-to-corner fashion.

† Crystal data for 1: Se₂N₂CH, M = 199.0, triclinic, $P\overline{1}$, a = 6.279(4), b = 7.961(6), c = 8.012(5) Å, $\alpha = 69.94(6)$, $\beta = 88.98(5)$, $\gamma = 84.03(6)^\circ$, V = 374.1(4) Å³, Z = 4, $D_c = 3.53$ g cm⁻³, $\mu = 19.4$ mm⁻¹. Data were collected with an Enraf-Nonius CAD-4 automated diffractometer, with graphite-monochromated Mo-Kα-radiation ($\lambda = 0.71073$ Å) using θ -2 θ scans to a $2\theta_{max} = 50^\circ$. The structure was solved by direct methods (SHELX) and refined by full-matrix least-squares analysis which minimized $\Sigma w(\Delta F)^2$. 81 Parameters were refined using 700 unique observed reflections [$I > 2.5 \sigma(I)$] to give R = 0.048 and $R_w = 0.050$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Data Centre. See Notice to Authors, Issue No. 1.

Fig. 2 Columns of dimers running parallel to z

In the solid state the dimer $[\text{HCN}_2\text{Se}_2]_2$ is diamagnetic, with a residual spin density, estimated by ESR, of 0.01%. The material exhibits a single crystal conductivity of 7×10^{-6} S cm⁻¹, a value which is at least three orders of magnitude higher than that seen in other monofunctional selenium-based radical dimers.⁴ Collectively the interdimer Se…Se contacts, indicated above, generate a structure in which dispersion of the valence and conduction bands is more pronounced than in organo-substituted materials. We thank the NSERC of Canada, the NSF and the State of Arkansas for financial support.

Received, 13th May 1992; Com. 2/02481K

References

- 1 A. W. Cordes, R. C. Haddon and R. T. Oakley, in *The Chemistry* of *Inorganic Ring Systems*, ed. R. Steudel, Elsevier, Amsterdam, 1992, p. 295; (b) A. J. Banister and J. M. Rawson, in *The Chemistry* of *Inorganic Ring Systems*, ed. R. Steudel, Elsevier, Amsterdam, 1992, p. 323.
- A. Vegas, A. Pérez-Salazar, A. J. Banister and R. G. Hey, J. Chem. Soc., Dalton Trans., 1980, 1812; H.-U. Hofs, J. W. Bats, R. Gleiter, G. Hartmann, R. Mews, M. Eckert-Maksić, H. Oberhammer and G. M. Sheldrick, Chem. Ber., 1985, 118, 3781; A. W. Cordes, J. D. Goddard, R. T. Oakley and N. P. C. Westwood, J. Am. Chem. Soc., 1989, 111, 6147; A. J. Banister, M. I. Hansford, Z. V. Hauptmann, S. T. Wait and W. Clegg, J. Chem. Soc., Dalton Trans., 1989, 1705.
- 3 P. Del Bel Belluz, A. W. Cordes, E. M. Kristof, P. Kristof, S. W. Liblong and R. T. Oakley, J. Am. Chem. Soc., 1989, 111, 9276.
- 4 A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley and T. T. M. Palstra, *Inorg. Chem.*, 1992, **31**, 1802.
- 5 A. W. Cordes, R. C. Haddon, R. T. Oakley, L. F. Schneemeyer, J. V. Waszczak, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc., 1991, 113, 582.
- 6 M. P. Andrews, A. W. Cordes, D. C. Douglas, R. M. Fleming, S. H. Glarum, R. C. Haddon, P. Marsh, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer, G. W. Trucks, R. Tycko, J. V. Waszczak, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc., 1991, 113, 3559.
- 7 A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer and J. V. Waszczak, J. Am. Chem. Soc., 1992, 114, 1729.
- 8 R. T. Boeré, R. T. Oakley and R. W. Reed, J. Organomet. Chem., 1987, 331, 161.
- 9 A. Bondi, J. Phys. Chem., 1964, 68, 441.